

An Energy Efficiency Workshop & Exposition

Palm Springs, California

IEQ and Health – Current Research Findings and the NORA IEQ Research Agenda

Mark J. Mendell, Ph.D.

June 6, 2002 - 4:00-5:30 p.m.

- Introduction
- Current Knowledge -- Effects of IEQ
- Recommended IEQ Research
- Conclusions

INTRODUCTION

- People in US spend over 90% of time indoors
- Indoor exposures different from outdoor, often higher
- Evidence associates IEs with various adverse health effects and economic impacts

- Nationwide consensus process within U.S. occupational health community
- Indoor Work Environments selected as a priority topic for improving worker health
- NORA Indoor Environment Team defined current knowledge and research needs

CURRENT KNOWLEDGE – EFFECTS OF IEQ

- Well-understood building-related illnesses
 - Legionnaires Disease (+ Pontiac Fever)
 - > Hypersensitivity pneumonitis
 - Humidifier fever
 - > Asthma
 - Carbon monoxide poisoning
 - Fiberglass skin and eye irritation

- Less well-understood building-related health effects
 - building-influenced respiratory infections
 - building-related asthma and allergic disease
 - building-related symptoms ("sick building syndrome")

- E.g., influenza, common cold, (TB)
- Evidence from multiple studies
- Suggests that building factors can substantially influence incidence of communicable respiratory infections among occupants

- Asthma
- Hypersensitivity Pneumonitis
- □ Allergic Rhinitis . . .

Adjusted Odds Ratios -- Risk Factors* for Work-Related Respiratory Symptoms -- NIOSH Office Investigations**

HVAC Risk Factors

* wheeze, shortness of breath, tight chest, cough

** Mendell and Naco, unpublished manuscript

- e.g., irritated eyes, nose, throat, skin; headache, fatigue, breathing problems
- first known in "complaint buildings"
- also common in non-complaint buildings
- 23% of U.S. office workers have 2+ frequent, work-related symptoms
- evidence suggests BRS represents multiple human responses to multiple causes

Median Symptom Prevalences in NIOSH HHE and (29) EPA BASE Office Buildings

Symptom Outcomes

- low ventilation rate
- air-conditioned ventilation systems
- humidified ventilation systems
- moisture, dirt, related microorganisms
- high temperature
- volatile organic chemicals and pesticides
- personal factors (female, clerical, high job stress)

- other building-related risks from some studies
 - carpet / fleecy materials
 - photocopier use
 - very low humidity
 - poor ventilation system design/maintenance
 - endotoxin (from bacteria)
 - (VOCs, plastic materials, formaldehyde)

- ventilation rates increasing up to 10 L/s-person
 symptoms decrease significantly
- some studies indicate improvements even with much higher ventilation rates
- no apparent threshold or "no-further-benefit" level

Comparison of SBS Symptoms with Natural Ventilation and AC Type of ventilation system

		No of	Natural Venti-	AC + No	AC + Steam	AC + Evap.	AC + Spray
First Author	Year	subjects	lation	Humid.	Humid.	Humid.	
Jaakkola	95	868		—			
Mendell	96	710	\bigcirc	–			
Mendell, Burge	90, 87	1459	\bigcirc	–			
Mendell, Harrison	90, 87	1044	\bigcirc	–			
Zweers	92	2806		–			
Jaakkola	95	335					
Mendell, Burge	90, 87	863	$\bigcup_{i=1}^{n}$				
Zweers	92	3573	$\left.\begin{array}{c} \\ \\ \end{array}\right.$				
Jaakkola	95	559	$\bigcup_{i=1}^{n}$				
Teeuw	94	927	igg				
Mendell, Burge	90, 87	1991	\bigcup				
Mendell, Finnegan	90, 87	787	\bigcirc				
Mendell, Harrison	90, 87	2080	\bigcup				
Mendell, Hedge	90, 84	1214	\bigcirc				
Zweers	92	3846	Q				
Brasche	99		\bigcirc				
Hawkins	91	255	\bigcirc	_			

Significantly more symptoms

○ = Same #

Source: Seppanen and Fisk, in press

>65% of US workforce in indoor environments

respiratory infections 6-8 M cases

\$3-5 B

asthma and allergies 0.3-0.7 M asthma

1-3 M allergy

\$0.2-0.6

B

bldg-related symptoms 8-30 M

\$4-70

* NORA Indoor Environment Team, AJPH 2002 in press

B

RECOMMENDED IEQ RESEARCH

- Health effects causes and prevention
 - building-influenced respiratory infections
 - building-related asthma and allergic disease
 - building-related symptoms
- Science and technology of indoor environments and buildings
- Improving implementation of knowledge on indoor environments and health

- Recommended building practices for IEQ and health
 - adequate outdoor air for health
 - proper ventilation system design, maintenance, and operation
 - ventilation system clean and dry
 - temperatures at lower end of comfort range
- Recommended research
 - key IEQ-related health effects
 - science and technology of indoor environments
 - improving implementation of IEQ knowledge in buildings

END